generation mPorer

LINE Commission

August 10, 2012

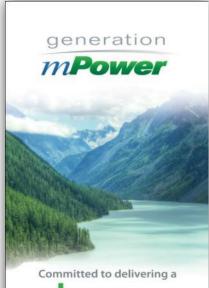
John Ferrara, P.E. Director Business Development Generation mPower LLC

© 2012 GENERATION MPOWER LLC ALL RIGHTS RESERVED.

Generation mPower LLC

Formal alliance between B&W and Bechtel

- Joint Venture agreement executed July 14, 2010
- Substantial investment commitments by B&W and Bechtel


Recognized and established energy industry leaders

- B&W:
 - 60+ years of nuclear engineering and manufacturing experience
 - Exclusive B&W mPower™ reactor technology
- Bechtel Power:
 - 60+ years of nuclear power industry experience
 - Integrated engineering and project management leadership

Alliance objectives

- Design, license and deploy first commercially viable Gen III++ SMR
- Improve cost and schedule certainty, with reasonable investment
- Increase accessibility to nuclear power across global energy industry

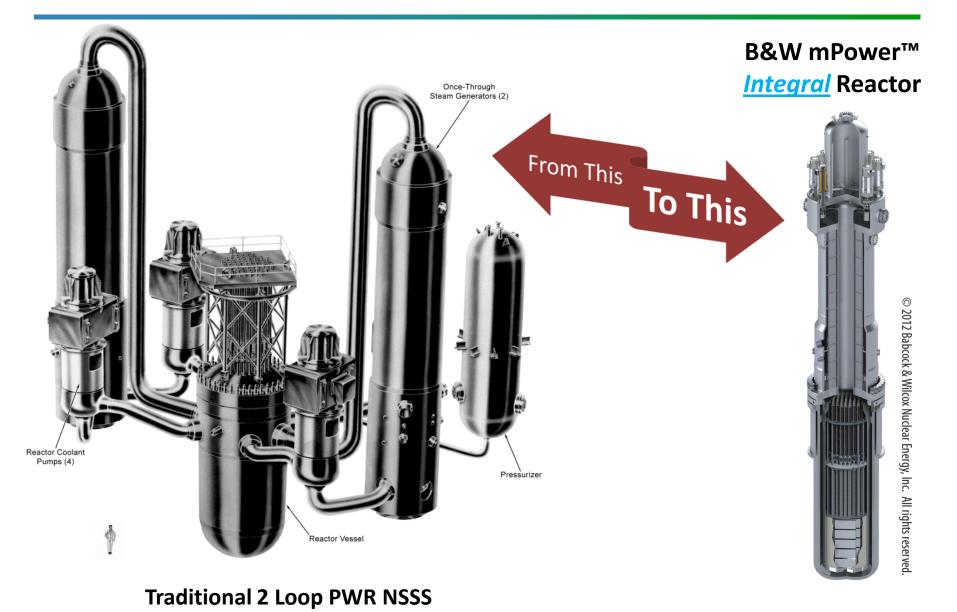
www.generationmpower.com

Capital Efficient
 Flexible Sizing
 Innovative Integrated Design
 Made in North America

A "game changer" for the global energy industry

Develop and deploy, by 2020, an SMR that offers:

- ✓ Lower capital cost
- ✓ Schedule and cost certainty
- Competitive LCOE pricing

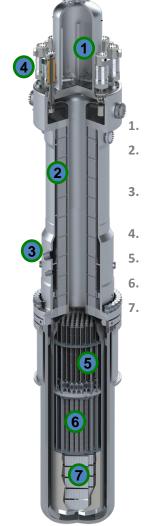

within the constraints of:

- <u>Proven</u>: GEN III+, established NRC regulation
- <u>Safe</u>: Robust margins, passive safety
- Practical: Standard fuel, construction and O&M
- <u>Benign</u>: below grade, small footprint, public acceptance

Traditional vs. New

B&W mPower™ Reactor

Integral 530 MWt NSSS module


- Core, CRDMs, SG, Pressurizer and Coolant Pumps
- No penetrations below top of core
- 50-degree superheat in Secondary Loop
- 60-year design life, rail shippable

Passively safe design philosophy

- Core remains covered during all DBAs
- No active ECCS or safety-related AC power
- Multiple defense-in-depth layers deliver ~10⁻⁸ CDF

4-Year fuel cycle with "standard" PWR fuel

- 69 fuel assemblies with <5% ²³⁵U enrichment
- Burnable poisons, no chemical boron shim in coolant
- Full reactivity control using 69 control rod assemblies

- Pressurizer
- 2. Once-Through Steam Generator
- 3. Feedwater Inlet / Steam Outlet
- 4. Reactor Coolant Pumps
- 5. Electro- Hydraulic CRDMs
- 6. Upper Internals
- . Reactor Core

Modular ALWR with best of Generation III+ features ... low risk, low cost and passively safe

Nuclear Island Features

Fully underground

- Protected from external threats
- Enables security-informed architecture
- More efficient seismic design
- Steel containment, with space for O&M activity

"Passive safety" design

- No safety-related emergency AC power
- 72-hour safety-related control/monitoring battery
- No shared active safety systems between units
- 14-day "coping time" under station blackout
- No containment sprays, sumps or recirculation

Enhanced spent fuel pool configuration

- Underground, inside reactor building
- Large heat sink with 30-day "coping time"

"Simple and robust" architecture lowers cost and risk, enhances licensing

mPower "Twin Pack" Site Layout with Water-Cooled Condenser

- 2 x 180MWe* units
- Compact <40-acre site footprint*</p>
- Low profile, separated NI and TI
- All safety-related SSCs below grade
- One-to-one reactor to T/G alignment
- Enhanced security posture
- Optimized for minimum staff and O&M
- Water- or air-cooled condenser option
- Conventional steam cycle components
- Load-following capability
- "Island Mode" operation
- 3-year construction schedule
 *with water-cooled condenser

Security-informed plant design contains O&M costs

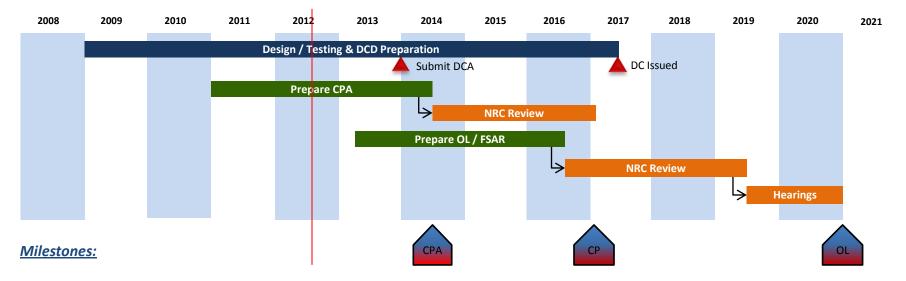
View animation of mPower "Twin Pack"

m**Power**

Protection against "Fukushima-type" Events

Events and Threats	mPower Design Features
Earthquakes And Floods	 Seismic attenuation: Deeply embedded reactor building dissipates energy, limits motion "Water-tight": Separated, waterproof reactor compartments address unexpected events
Loss of Offsite Power	 Passively safe: AC power, offsite or onsite, not required for design basis safety functions Defense-in-depth: 2 back-up 2.50MWe diesel generators for grid-independent AC power
Station Blackout	 3-day batteries: Safety-related DC power supports all accident mitigation for 72 hours APU back-up: Auxiliary Power Units inside reactor building recharge battery system Long-duration "station keeping": Space allocated for 7+-day battery supply for plant monitoring/control
Emergency Core Cooling	 Gravity, not pumps: Natural circulation decay heat removal; water source in containment Robust margins: Core heat rate (11.5kW/m) and small core (530MWt) limit energy Slow accidents: Maximum break small compared to reactor inventory (4.7x10-5m²/m³)
Containment Integrity and Ultimate Heat Sink	 Passive hydrogen recombiners: Prevention of explosions without need for power supply Internal cooling source: Ultimate heat sink inside underground shielded reactor building Extended performance window: Up to 14 days without need for external intervention
Spent Fuel Pool Integrity and Cooling	 Protected structure: Underground, inside reactor service building, located on basemat Large heat sink: 30+ days before boiling and uncovering of fuel with 20 years of spent fuel

Multi-layer defense ... mitigates extreme beyond-design basis challenges



Lead Plant (TVA Clinch River): 10CFR50

- First U.S. site-specific SMR license application
- 10CFR50 license approach lowers FOAK risk
 - Targeting mid-2014 CPA submittal by TVA
 - Enables design changes in construction
- CP is opportunity to identify NRC issues early
- Manage regulatory risk with early engagement

Subsequent Plants: 10CFR52 with DC/COLA

- Gain DCD efficiency by levering PSAR work
- Submit DCA during 4Q13
- Target Design Certification by NRC in 2017
- Resolve all known FOAK issues before filing DCA
 - 24 topical & technical reports planned pre-DCA
 - Continue aggressive pre-DCA NRC engagement

Testing Program

Component Prototyping

- Reactor Coolant Pump
- Control Rod Drive Mechanisms
- Fuel Mechanical Testing
- CRDM/Fuel Integrated Test
- Fuel Critical Heat Flux
- Emergency Condenser

Integrated Systems Testing

- Heat Transfer Phenomena
- Steam Generator Performance
- LOCA Response
- Pressurizer Performance
- Reactor Control

Dedicated mPower facility ... backbone of \$100M testing program

Summary

- World's first commercially viable Gen III+ SMR
- Proven, practical LWR technology
- Simple, passively-safe design
- NSSS factory-built in North America
- Licensing within current LWR framework
- Schedule and cost certainty
- Lower capital cost / competitive LCOE
- Broad industry support
- Deployment and project-related work underway
- Increased nuclear accessibility worldwide
- Re-establish US nuclear competency

Deliver on the promise of a new clean energy option

