

May 12, 2021

Dr. Jess Gehin Associate Lab Director, Nuclear Science and Technology Jess.Gehin@Inl.gov

Nuclear Science & Technology Overview

Leadership in Nuclear Energy Commission

Jess C. Gehin, PhD Associate Laboratory Director for NS&T

• Education:

- B.S. Nuclear Engineering, Kansas State, 1988
- M.S. Nuclear Engineering, MIT, 1990
- Ph.D. Nuclear Engineering, MIT, 1992
- Oak Ridge National Laboratory, 1992-2018
 - High Performance Research Reactor Design and Operation
 - Disposition of Plutonium in Russian Reactors
 - Nuclear Fuel Cycle Analysis
 - Advance Reactor Technologies
 - Modeling and Simulation, CASL Director
- Idaho National Laboratory, 2018-present
 - Chief Scientist for Nuclear Science & Technology
 - Microreactor program, national technical director
 - Associate Laboratory Director for NS&T
- Fellow, American Nuclear Society

INL is addressing the world's most challenging problems

- Nuclear fuels and materials
- Reactor systems design and analysis
- Fuel cycle science and technology
- Nuclear safety and regulatory research
- Advanced Scientific Computing

Advanced Test Reactor

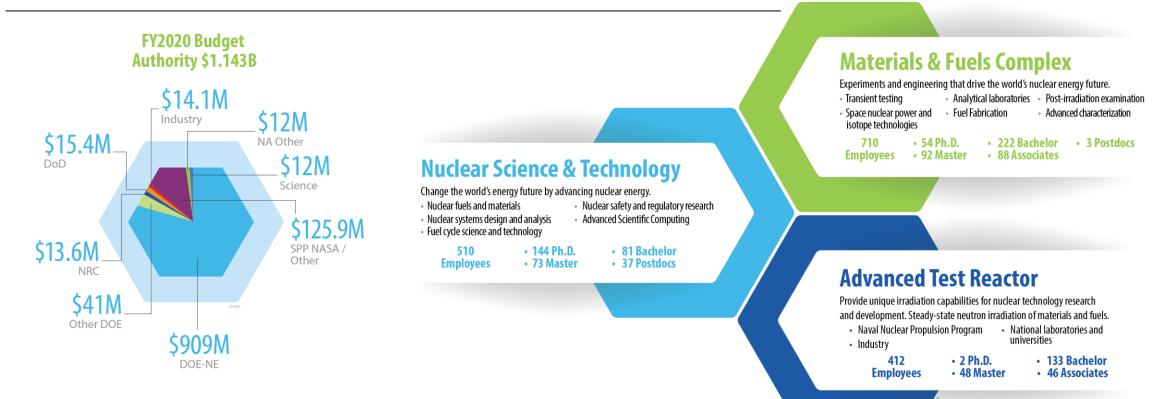
- Steady-state neutron irradiation of materials and fuels
- Naval Nuclear Propulsion Program
- Industry
- National laboratories and universities

Materials & Fuels Complex

- Transient testing
- Analytical laboratories
- · Post-irradiation examination
- Advanced characterization
- Fuel fabrication
- Space nuclear power and isotope technologies

Energy & Environment S&T

- Advanced transportation
- · Environmental sustainability
- Clean energy
- Advanced manufacturing
- Biomass



National & Homeland Security

- Critical infrastructure
 protection and resiliency
- Nuclear nonproliferation
- Physical defense systems

Nuclear RD&D Team at INL

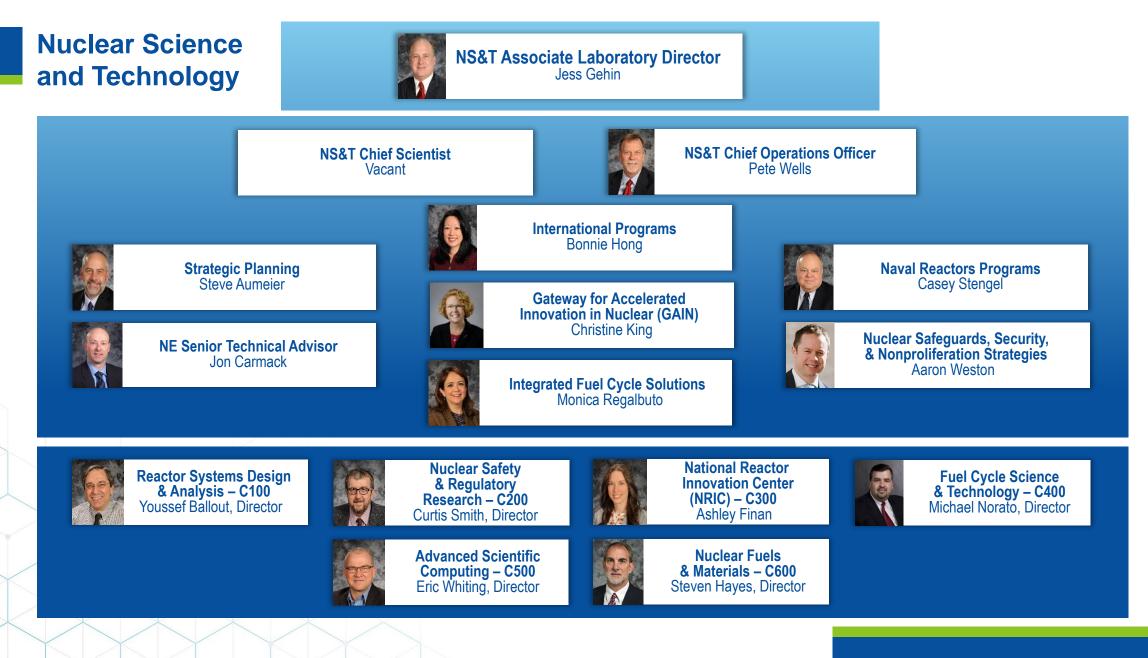
1,**632** staff working to revive, revitalize, and expand nuclear energy, enabled by unique research facilities, infrastructure, & capabilities

Unique Research Facilities and Infrastructure/Foundational Enablers

Nuclear Science & Technology Vision, Mission, Priorities

Our Vision:

Change the world's energy future by advancing nuclear

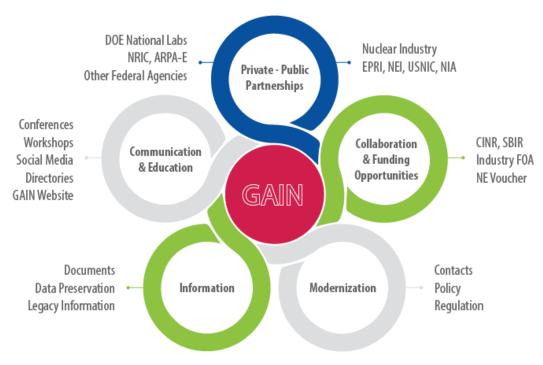

Our Mission:

Enable nuclear energy expansion through innovation

Our Priorities for Nuclear Energy:

- Continued operation of the existing fleet
- Replacement and expansion of existing fleet
- Management and disposition of spent fuel

Invention & Software **United States Patents Granted Nuclear S&T Directorate** Disclosures **New Hires** Post Docs 51() Ph.D. staff Bachelor new hires 2021 to date last 12 months **Grad Fellows** Visiting Researcher postdocs MS Associate Interns (current) Interns


IDAHO NATIONAL LABORATORY

DATA BY FISCAL YEAR

Gateway for Accelerated Innovation in Nuclear – Functions and Goals

- **1.** *Provide nuclear industry entities access* to financial support opportunities and national laboratory capabilities
- **2.** Work with industry to identify gaps, gather needs, and develop viable paths forward to inform DOE research programs and remove barriers for industry.
- **3.** Complete the key portions of a modernized risk-informed regulatory framework enabling deployment of advanced nuclear energy technologies.
- **4.** Facilitate the advanced nuclear industry's access to information to support their technology commercialization efforts.
- **5.** Contribute tailored, factual information to key stakeholders to motivate the integration of clean nuclear energy for long-term success.

Light Water Reactor Sustainability

Enhancing the safe, efficient, and economical performance of our nation's nuclear fleet, and extend their operating lifetimes

Plant Modernization **Enable plant efficiency improvements** through a strategy for long-term modernization

Flexible Plant Operation & Generation **Enable diversification** of light-water reactors to produce non-electrical products

Risk Informed System Analysis *Develop analysis methods* and tools to optimize safety, and economics

Materials Research

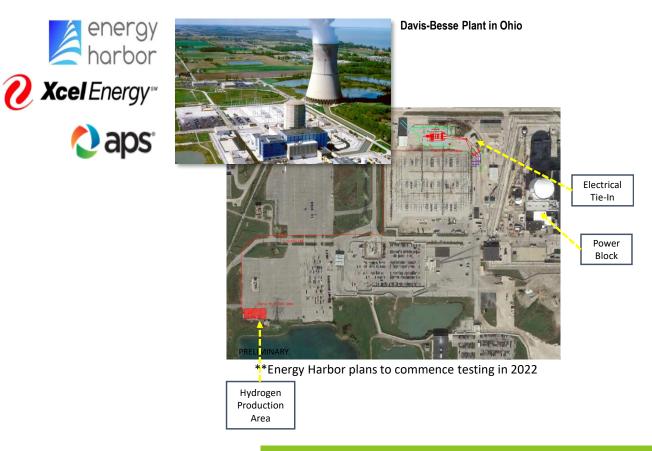
Understand and predict long-term behavior of materials

Physical Security

Develop technologies to optimize physical security

For more information: https://lwrs.inl.gov

DOE's Program for LWR RD&D



Nine Mile Point (Courtesy of Exelon)

LWRS - Products Beyond Electricity Markets

- *Goal:* Operation of an LWR to produce non-electrical products by 2025–2030
- Needs:
 - Technical & Economic Assessments
 - Front-End Engineering and Design, Demonstration, and Deployment
 - Probabilistic Risk Assessment and Possible License Approaches
 - Stakeholder Engagement
- DOE FOA awards:
 - FOA awards: Exelon, Energy Harbor,
 Xcel Energy, Arizona Public Services

Increase the value from nuclear power plant by developing approaches for hybrid plant operations

National Reactor Innovation Center Enabling Reactor Demonstrations

- Established in 2019 with the purpose to provide the capabilities to support development and demonstration of advanced reactors
- Objective 1: Enable demonstration of two advanced reactors by the end of 2025
 - Make available infrastructure, sites, materials, expertise
 - Provide regulatory support
 - Best practices in public engagement
- Objective 2: Prepare DOE/labs for continuing innovation and demonstration
 - Develop best practices for planning/construction/demonstration of nuclear projects
 - Develop enduring infrastructure and expertise
 - Establish methods for efficient coordination among laboratories

NRIC-DOME Test Bed

(Demonstration of Operational Microreactor Experiments)

- Test bed for microreactors less than 20 MWt
- Reestablish capabilities of existing infrastructure

NRIC-LOTUS Test Bed

(Laboratory for Operations and Testing in the United States)

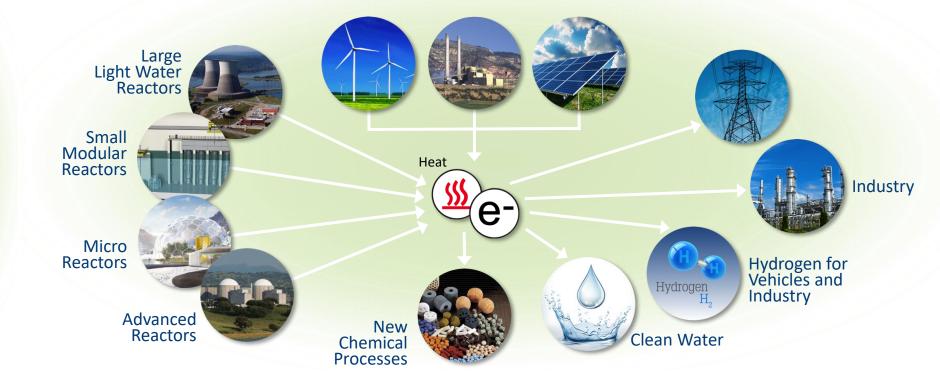
 Experimental test bed with 500kW heat rejection system

MARVEL – Microreactor Applications Research, Validation & Evaluation Project

- DOE project to develop a small scale (100 kWt) microreactor to aid R&D on the unique operational aspects of these new reactors and integrating them with end-user applications.
- Rapid development timeline: planned operation by early 2023
- Provides experience in developing, constructing and operating a new nuclear reactor that can be leveraged by other developers
- Currently engaging interested end users for testing activities including:
 - Microgrid integration
 - Remote power and heat for computing, water, buildings, etc.

DOE has selected the Advanced Reactor Demonstration Program and ARC-20 Projects

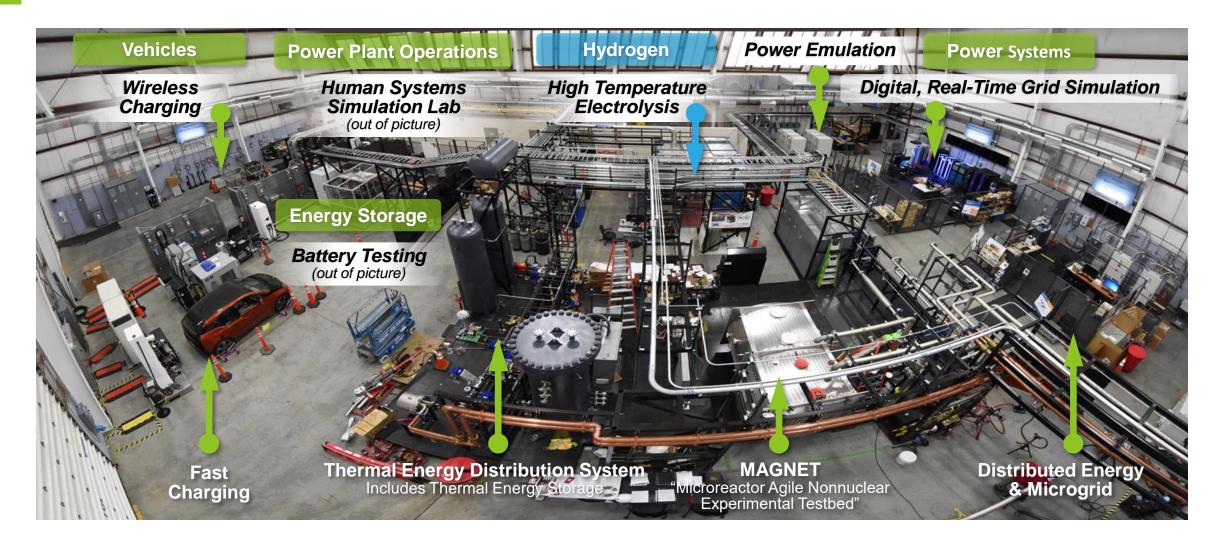
INL is a partner on all ARDP Projects ai ARC and GA ARC-20 Projects


Integrated Energy Systems

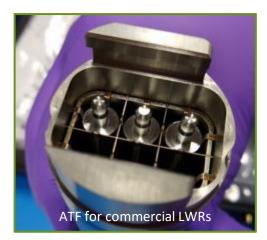
Maximizing energy utilization, generator profitability, and grid reliability and resilience through systems integration

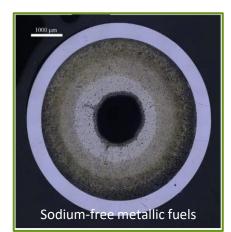
Today Electricity-only focus

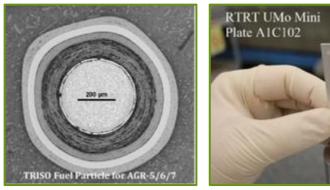
Potential Future Energy System


Enhanced energy system leverages contributions from low emission energy generation for electricity, industry, and transportation

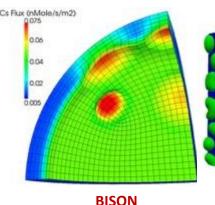
Flexible Generators ***** Advanced Processes ***** Revolutionary Design


For more information: https://ies.inl.gov


Foundational laboratory capabilities for integrated energy systems



Nuclear Fuel Research and Development


- Advanced Fuels Campaign (AFC)
 - Accident Tolerant and High Burnup Fuels (ATF)
 - Fuels for Advanced Reactors
- TRISO Fuel and Graphite Qualification (AGR)
- High Performance Research Reactor (HPRR) Fuel Development and Qualification
- Nuclear Materials Discovery and Qualification Initiative (NMDQi)
- Nuclear Energy Advanced Modeling and Simulation (NEAMS)
- Other Significant Programs
 - TREAT Transient Testing (ATF, NASA, Industry)
 - Versatile Test Reactor Fuel Design/Qualification
 - Fusion Safety Program (materials & ³H performance)
 - Fuel testing to support multiple ARDP awards



MARMOT

TREAT Fuel Safety Limit Testing

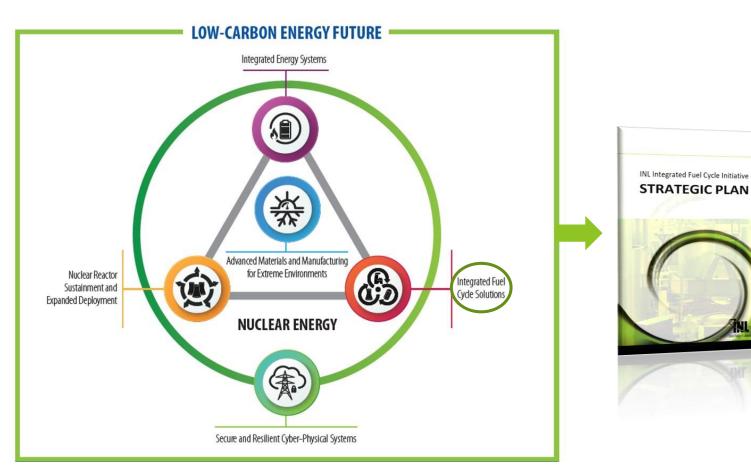
Activities Supporting Fuels and Materials Programs

Nuclear Science User Facilities (NSUF)

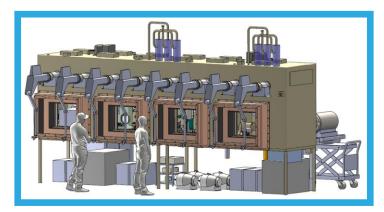
 Experiments awarded competitively to university, industry, and laboratory researchers in nuclear facilities at 20 partner institutions, including ATR, TREAT, HFIR, MITR, and BR2 reactors

Advanced Sensors and Instrumentation (ASI)

 Development/implementation of instrumentation for irradiation experiments and in-reactor applications

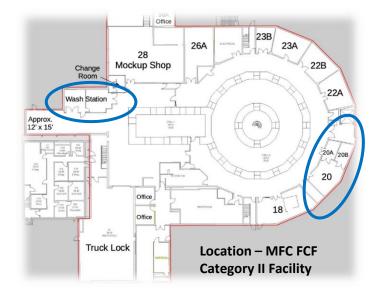

ATR I-Loop Project

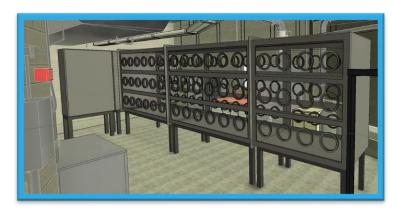
- Expand PWR/BWR steady-state and ramp testing in ATR
- Advanced Fuel Testing Capabilities
 - Loss-of-Coolant-Accident (LOCA) test train for TREAT
 - Irradiated fuel rod re-fabrication/re-instrumentation capability to support LWR fuel safety testing in TREAT
 - Accelerated fuel testing methodologies (FAST)


Integrated Fuel Cycle Solutions

INL supports the safe, secure, and economic management of nuclear fuel from inception to final disposition

- Supports sponsor diversification by capitalizing in growing NNSA, NHS, DTRA, and AI-Data Science initiatives and budgets
- Provides an integrated civilian nuclear fuel cycle test bed capability not available at any other national laboratory
- Develops key infrastructure that supports RD&D of national security solutions for the evolving civilian nuclear fuel cycle
- **Develops new scientists** to support fuel cycle and nonproliferation objectives


Integrated Fuel Cycle Solutions Test Beds

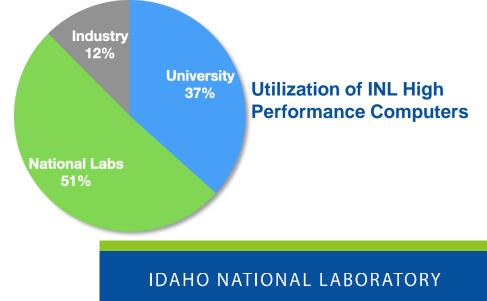


Molten Salt Thermophysical Examination Capability (MSTEC)

Objective – Provide critical data needed to **design**, **demonstrate**, **license**, **and operate a molten-salt reactor**

- Properties include viscosity, density, heat capacity, thermal conductivity, melt temperature, vapor pressure, and redox chemistry
- Supports development of salt purification methods

Beartooth – SNM Test Bed


Objective – Provides an integrated civilian nuclear fuel cycle test bed capability for **testing new nonproliferation technologies**

- Platform for instrumentation development supporting tracking and accounting of special nuclear material and proliferation detection of the evolving nuclear fuel cycle
- Develops new AI and ML methods to inform nonproliferation decision making

Advanced Scientific Computing Collaborative Computing Center is Living Up to its Name

- Facility opened in October 2019
- Four supercomputers fully operational and available for use by DOE, university, and industry
- Sawtooth is INL's flagship computer 48th fastest computer in the world as of Nov 2020
- Falcon Supercomputer strategy is being developed for transition to Idaho university operations and management
- Nuclear Computational Resource Center established to facilitate access to INL computing resources and software

Nuclear Science & Technology...

- Advancing nuclear energy technologies through broad R&D leadership and impactful outcomes
- Using and developing unique INL nuclear R&D capabilities for the nation
- Partnering with private sector to enable advanced reactor development, demonstration, and deployment

Idaho National Laboratory

WWW.INL.GOV