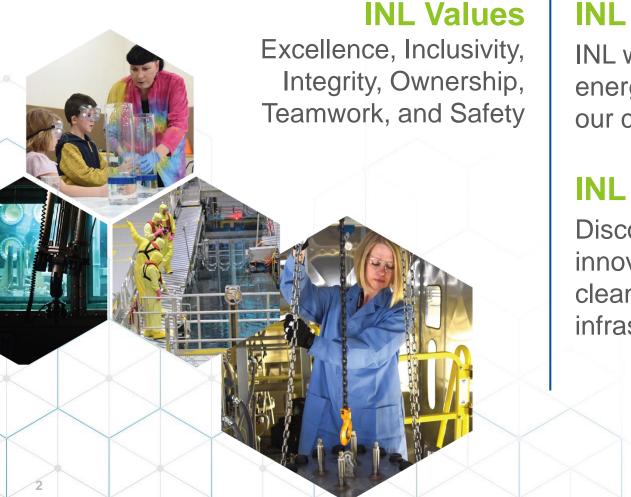
August 2021


Dr. Todd Combs Associate Laboratory Director for Energy & Environment Science and Technology

# Energy, Environment, Science & Technology

# **Program Overview**



# INL is uniquely capable of addressing challenges to the nation's energy and security future



# **INL** Vision

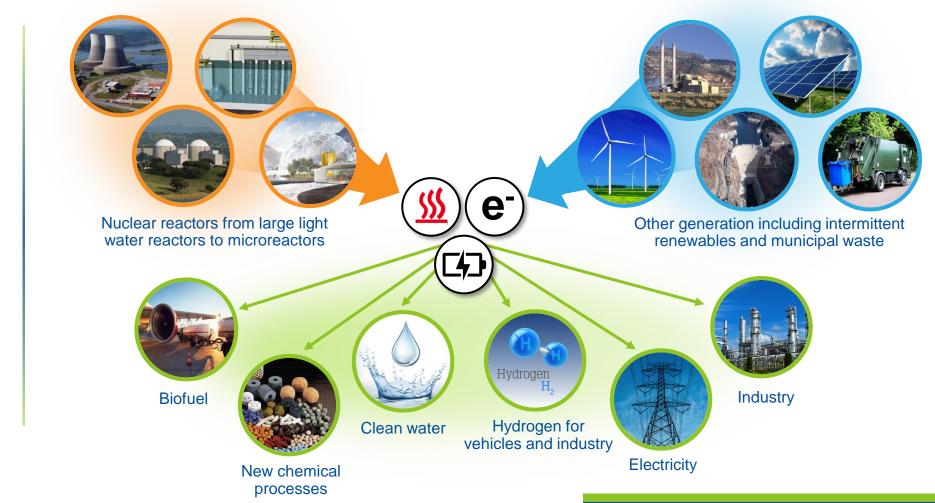
INL will change the world's energy future and secure our critical infrastructure.

# **INL Mission**

Discover, demonstrate and secure innovative nuclear energy solutions, clean energy options and critical infrastructure.

# **Overview**

- Integrated Energy Systems
- Resilient Energy Systems
- Manufacturing
- Feedstocks for a Circular Economy


# **Integrated Energy Systems**

# **Transforming the energy paradigm**

**Today** Electricity-only focus

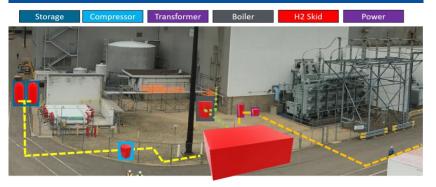
# **Future Energy System**

Integrated grid system leverages contributions from nuclear fission beyond electricity



# **Joint EERE-NE H<sub>2</sub> Production Demonstration Projects**

## Four projects have been announced for demonstration of hydrogen production at nuclear power plants


- Demonstrate hydrogen production using direct electrical power offtake from a nuclear power plant for a commercial, 1-3 MWe, low-temperature (PEM) and high temperature steam electrolysis modules
- Acquaint NPP operators with monitoring and controls procedures and methods for scaleup to large commercialscale hydrogen plants
- Evaluate power offtake dynamics on NPP power transmission stations to avoid NPP flexible operations
- Evaluate power inverter control response to provide grid contingency (inertia and frequency stability), ramping reserves, and volt/reactive control reserve
- Produce hydrogen for captive use by NPPs and first movers of clean hydrogen







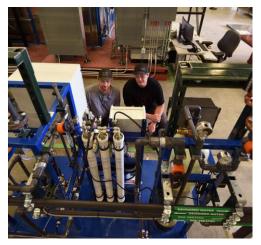
### Thermal & Electrical Integration at Xcel Energy Nuclear Plant



# **High Temperature Electrolysis – Hydrogen Production**

# **Program Overview**

- High temperature electrolysis (HTE) systems produce hydrogen using heat and electricity with ultra-high efficiency.
- INL's 25 kW HTE Station (pictured right) verifies durability and performance of solid oxide cells that are used to produce hydrogen with high efficiency.


# **Example Projects**

 High Temperature Steam Electrolysis modules testing: Bloom Energy, FuelCell Energy, OxEon

# Impact/Opportunity

• Establish Idaho as a leader in a Western United States Hydrogen Hub to produce hydrogen using nuclear power.





# **Hydrogen Production - Partners**

## **Program Overview**

• INL has teamed with several industry partners to demonstrate hydrogen production at nuclear power plants.

## **Partnerships**

- Bloom Energy has manufactured a 100kW HTE to be installed and tested at INL in September.
- INL will install a 150 kW HTE system at Xcel Energy Nuclear Power Plant to demonstrate high-efficiency hydrogen production using nuclear power.
- FuelCell Energy is developing a 250kW HTE to be tested by INL in early 2022.
- OxEon is manufacturing a reversible solid oxide cell system that will operate in either electrolysis mode to produce hydrogen from electricity and water, or in fuel cell mode to produce electricity from hydrogen.





# **Energy Storage**

### **Program Overview**

• INL's battery facilities provide 20,000 square feet and can test hundreds of batteries at the same time.

## **Example Projects**

- Battery500: The team has developed long life batteries with two times the energy of previous state of the art commercial batteries.
- Machine Learning: INL is reducing time needed to validate technologies.
  - From 18 months to 2 weeks, the team can now predict performance and cell failure 36 x's faster.

### Impact/Opportunity

• Idaho's cobalt deposits provide opportunity to understand how critical metals can be a part of advanced battery development.





# **Transportation Electrification**

## **Program Overview**

 Provide data, tools and expertise to help the public and private sectors plan the fueling/charging infrastructure necessary to support widespread electric and fuel-cell vehicle adoption.

### **Example Projects**

- White House national EV charging network planning team
- INL Netzero
- Technical assistance to Idaho OEMR, DEQ for EV charging infrastructure program using Volkswagen settlement funds

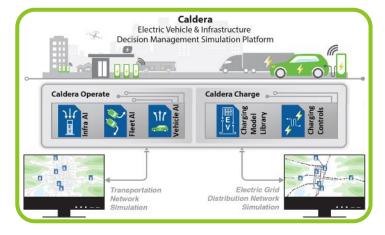
## Impact/Opportunity

- INL motorcoach fleet electrification will provide a blueprint for other Idaho fleets.
- Helping to shape state-wide EV charging infrastructure network and program that will bring more funding to Idaho.



# **Electric Vehicles & the Grid**

# **Program Overview**


- Developing technology to integrate EV charging and hydrogen fueling into the broader energy system.
- Our research includes data collection, modeling and simulation, cybersecurity, and real-world demonstrations.

# **Example Projects**

- Caldera: a tool for evaluating EV charging impact on the electric grid
- Cybersecurity: EV charging as critical infrastructure must be secure to protect transportation and the grid
- Studying in-road wireless charging could remove the need for large, bulky batteries.

# Impact/Opportunity

 Partnerships for Technical Collaboration with Rocky Mountain Power, Valley Regional Transit, Mountain Rides and Republic Services





# Hydropower

# **Program Overview**

• Advancing hydropower's ability to balance the regional grid and maximizing the value of this renewable resource for communities.

### **Example Projects**

- Hydro+Storage: developing tools to design hydropower hybrids.
- Irrigation Modernization: decision tool for irrigation districts.
- Hydropower + Hydrogen: generating green hydrogen.

## Impact/Opportunity

- Working with Minidoka irrigation district to investigate upgrade opportunities.
- Teamed with Idaho Falls Power to show how hydropower plants can be used to serve critical community electric loads during emergency outage.
- Working with Idaho Power on viability of producing green hydrogen at one of their facilities; oxygen biproduct would be injected into river to improve water quality.





# **Resilient Energy Systems**

# **Microgrids**

# **Program Overview**

 INL's microgrid test bed system allows researchers to study and demonstrate their uses and component capabilities prior to real-world application.

## **Example Projects**

- Net-zero microgrids R&D initiative, with potential to incorporate and integrate advanced storage, renewable energies, no/low-carbon fuels, and small modular/micro reactor technologies.
- R&D on relocatable microgrid systems with outage relief benefits for end users.

## Impact/Opportunity

- Microgrid use increases clean energy resource developments, integration, and resiliency improvement potential.
- Consulted with Idaho Power and Idaho Falls Power to develop microgrid technologies that fit their needs.



# Manufacturing

# **Electric Field Assisted Sintering Technology (EFAST)**

# **Program Overview**

• EFAST is a system that can manufacture advanced components made of metals and ceramics that can withstand extreme conditions.

# **Example Projects**

• The new DCS-800 EFAST under construction at INL (pictured right) is the world's largest and can manufacture materials at industrially relevant scales.

## Impact/Opportunity

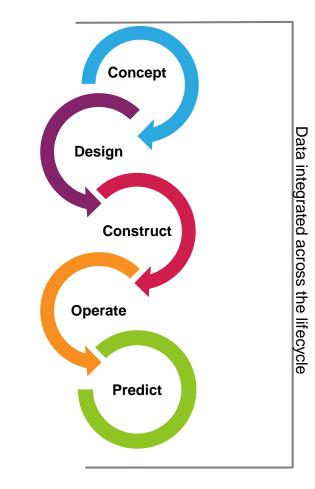
 INL houses the world's only capability to engage in all stages of R&D in a single site, from basic science through bench scale demonstration and digital engineering, to pilot scale production demonstration.





# **Digital Engineering**

# **Program Overview**


- Digital Engineering (DE) uses artificial intelligence and real-time integrated data to coordinate engineering, construction, procurement, and facility operations.
- DE keeps costs down through integrated design and work on track while dramatically reducing overall program risk.

### **Example Projects**

- Digital Engineering Design Ecosystem for Nuclear Reactors.
- Digital Twins for Non-Proliferation.
- Integrated Hybrid Cloud / High Performance Computing Platforms.

### Impact/Opportunity

• DE initiative is working to secure funding on new renewable energy digital twins (ex. Water Irrigation which will have significant impact on the snake river plain water system).

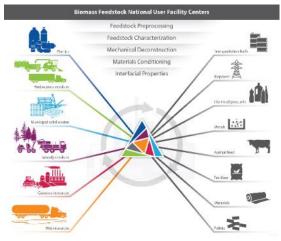


# Feedstocks for a circular economy

# **Biomass Feedstock National User Facility**

# **Program Overview**

 At the Biomass Feedstock National User Facility researchers focus on R&D associated with key technical barriers facing the U.S. bioenergy and manufacturing industry.


# **Example Projects**

- DARPA: mobile waste processing systems for remote locations.
- Waste fractionation to produce insulation or compounds for auto parts.
- New project on improving soil health with cover crops and biochar.

# Impact/Opportunity

- New scope to develop STEM curriculum on MSW and recycling strategies for Shoshone Bannock Tribe.
  - INL will work with this community to conduct waste surveys and collect materials for characterization and preprocessing.
- New market exploration enabled by fractionation, formulation, and merchandising.





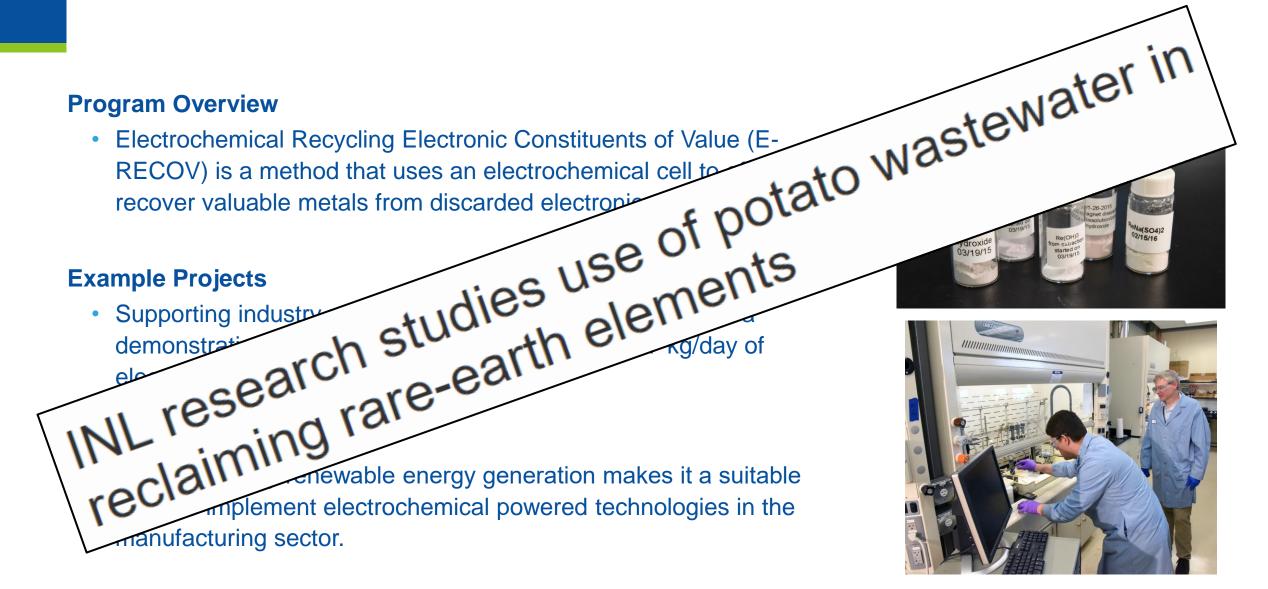
# **E-RECOV**

## **Program Overview**

 Electrochemical Recycling Electronic Constituents of Value (E-RECOV) is a method that uses an electrochemical cell to efficiently recover valuable metals from discarded electronics.

### **Example Projects**

 Supporting industry partner Quantum Ventura Inc., to build a demonstration plant with capacity to process over 7 kg/day of electronic waste


## Impact/Opportunity

 Idaho's primary renewable energy generation makes it a suitable place to implement electrochemical powered technologies in the manufacturing sector.





manufacturing sector.



# **Questions?**