LINE Commission Office of Nuclear Energy Overview

U.S. Department of Energy | Office of Nuclear Energy August 20, 2021

Office of **NUCLEAR ENERGY**

Office of Nuclear Energy: By the Numbers

DAS for Nuclear	DAS for Nuclear	DAS for Reactor Fleet and	DAS for International	Manager, Idaho	NE-8
Infrastructure	Fuel Cycle and	Advanced Reactor	Nuclear Energy Policy	Operations	DAS for Spent Fuel
Programs	Supply Chain	Deployment	& Cooperation	Office	& Waste Disposition
Tracey Bishop	Andrew Griffith	Alice Caponiti	Aleshia Duncan	Robert Boston	

What We Do

Mission

To advance nuclear science and technology to meet U.S. **energy, environmental, and economic needs**.

Our Work

Solve challenges related to technology, cost, safety, security, and proliferation resistance through early-stage research, development, and demonstration.

Top Priorities: Keep Existing Plants Open

Enhance Performance and Reduce Operating Costs

- Develop advanced digital technologies
- Apply risk-informed systems analysis
- Provide technical analysis for continued long-term operation
- Commercialize Accident Tolerant Fuels
- Demonstrate hydrogen production

Exelon: Dresden Generating Station

DEMONSTRATION

GOAL: Test, license and build operational reactors within 5 - 7 years.

Natrium Reactor

Sodium-cooled fast reactor + molten salt energy storage system TERRAPOWER

Xe-100 High-temperature gas reactor X-ENERGY

RISK REDUCTION

GOAL: Solve technical, operational and regulatory challenges to support demonstration within 10 - 14 years.

eVinci Heat pipe-cooled microreactor WESTINGHOUSE NUCLEAR

BWXT Advanced Nuclear Reactor (BANR) High-temperature gas-cooled microreactor BWX TECHNOLOGIES

Molten Chloride Fast Reactor SOUTHERN COMPANY

CONCEPT DEVELOPMENT

3

GOAL: Solidify concept to mature technology for potential demonstration by mid-2030s.

High-Assay Low-Enriched Uranium (HALEU)

- Pursue multiple pathways to produce HALEU for testing and demonstration
- Piketon, OH first licensed HALEU production facility in the United States
- HALEU production to begin early next year

Centrus Energy advanced centrifuge

Top Priorities: Manage our Spent Nuclear Fuel

Spent Nuclear Fuel Management

- Revamp DOE's overall integrated waste management strategy
- Update and restart a consentbased siting approach to building a federal interim storage facility
- Develop high-tech railcars to transport spent nuclear fuel
- Perform R&D on high-burnup fuel

Idaho Nuclear Technology & Engineering Center

Diversity, Equity and Inclusion

Executive Order 13985

Charges Federal government to pursue a **comprehensive approach to advancing equity for all**, including people of color and others who have been historically underserved, marginalized, and adversely affected by persistent poverty and inequality.

President Joe Biden signs E.O. 13985 on January 20, 2021

Diversity, Equity and Inclusion

DOE Response to Executive Order 13985

Assess:

- Potential barriers in enrollment in, and access to, benefits and services
- Potential barriers in taking advantage of agency procurement and contracting opportunities
- Whether new policies, regulations, or guidance are necessary to advance equity
- Operational status and level of resources at DOE that serve underrepresented or disadvantaged communities

Secretary Jennifer Granholm and Chief of Staff Tarak Shah raise Pride flag at DOE

Diversity, Equity and Inclusion

Strengthening Tribal Relationships Through Nuclear Energy

Building bridges, trading expertise, expanding opportunities for federally-recognized Tribal governments in Office of Nuclear Energy activities

THE PRIORITIES

NETWG strengthens government-to-government relationships with the Office of Nuclear Energy and Indian Tribes to:

Expand

F

INTEGR

Cultural Resource Management

FY2021 Budget

The Office of Nuclear Energy was appropriated \$1.6B in FY2021, which comprises of four funding lines. Major highlights of each funding line include:

1. Nuclear Energy Research and Development funded at \$1.5B.

- Advanced Reactor Demonstration Program including Demonstration Reactors I and II funded at \$250M.
- Advanced Small Modular Reactors (NuScale/CFPP) funded at \$115M.
- Versatile Test Reactor reduced to \$45M.
- Accident Tolerant Fuel funded at \$105.8M.
- Idaho National Lab Infrastructure, including safeguards and security, funded at \$455.8M.
- Final year of High Assay, Low Enriched Uranium Enrichment Demonstration (in Piketon, Ohio) funded at \$40M.
- NE R&D Program Direction funded at request level, \$75.1M.
- **2. Interim Storage and Nuclear Waste Fund Oversight –** initial funding for \$27.5M
- **3. Uranium Reserve –** initial funding for \$75M (appropriated to NNSA; to be executed by NE)
- 4. Naval Reactors ATR Transfer continues at \$91M.

FY2022 Budget Request

The Office of Nuclear Energy requested \$1.8B for FY2022.

			FY 2022	Change
	FY 2020	FY 2021	Congressional	FY22 vs
			Request	FY21
Nuclear Waste Fund Oversight		27,500	7,500	(20,000)
Uranium Reserve		[75,000]	-	[-75,000]
Nuclear Energy R&D	1,493,408	1,507,600	1,850,500	342,900
Office of Nuclear Energy	1,493,408	1,535,100	1,858,000	322,900
Integrated University Program	5,000	5,000	6,000	1,000
STEP R&D	5,000	5,000	-	(5,000)
Reactor Concepts RD&D	267,000	208,000	240,000	32,000
Fuel Cycle R&D	305,100	309,300	368,500	59,200
Nuclear Energy Enabling Technologies	113,450	122,869	124,000	1,131
Advanced Reactors Demonstration Program	230,000	250,000	370,350	120,350
Versatile Test Reactor Project	-	45,000	145,000	100,000
Infrastructure	334,450	337,500	356,850	19,350
Idaho Sitewide Safeguards and Security	153,408	149,800	149,800	-
International Nuclear Energy Cooperation			5,000	5,000
Program Direction	80,000	75,131	85,000	9,869

Office of **NUCLEAR ENERGY**